LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of INCA precipitation analysis using a very dense rain gauge network in southeast Austria

Photo from wikipedia

Abstract. An accurate estimate of precipitation is essential to improve the reliability of hydrological models and helps for decision-making in agriculture and economy. Merged radar–rain-gauge products provide precipitation estimates at… Click to show full abstract

Abstract. An accurate estimate of precipitation is essential to improve the reliability of hydrological models and helps for decision-making in agriculture and economy. Merged radar–rain-gauge products provide precipitation estimates at high spatial and temporal resolution. In this study, we assess the ability of the INCA (Integrated Nowcasting through Comprehensive Analysis) precipitation analysis product provided by ZAMG (the Austrian Central Institute for Meteorology and Geodynamics) in detecting and estimating precipitation for 12 years in southeast Austria. The blended radar–rain-gauge INCA precipitation analyses are evaluated using WegenerNet – a very dense rain gauge network with about 1 station per 2 km2 – as true precipitation . We analyze annual, seasonal, and extreme precipitation of the 1 km × 1 km INCA product and its development from 2007 to 2018. Based on the results, the performance of INCA can be divided into three different periods. From 2007 to 2011, the annual area-mean precipitation in INCA was slightly higher than WegenerNet, except in 2009. However, INCA underestimates precipitation in grid cells farther away from the two ZAMG meteorological stations in the study area (which are used as input for INCA), especially from May to September ( wet season ). From 2012 to 2014, INCA's overestimation of the annual-mean precipitation amount is even higher, with an average of 25 %, but INCA performs better close to the two ZAMG stations. From 2015 onwards, the overestimation is still dominant in most cells but less pronounced than during the second period, with an average of 12.5 %. Regarding precipitation detection, INCA performs better during the wet seasons. Generally, false events in INCA happen less frequently in the cells closer to the ZAMG stations than in other cells. The number of true events, however, is comparably low closer to the ZAMG stations. The difference between INCA and WegenerNet estimates is more noticeable for extremes. We separate individual events using a 1-hour minimum inter-event time (MIT) and demonstrate that INCA underestimates the events' peak intensity until 2012 and overestimates this value after mid-2012 in most cases. The overestimation of the peak-intensity is more pronounced during July. In general, the precipitation rate and the number of grid cells with precipitation are higher in INCA. Furthermore, 40 % of the individual events start earlier, and 50 % end later in INCA. Considering four extreme convective short-duration events, there is a time shift in peak intensity detection. The relative differences in the peak intensity in these events can change from approximately −40 % to 40 %. The results of this study can be used for further improvements of INCA products as well as for future hydrological studies in this area.

Keywords: inca; rain gauge; analysis; precipitation

Journal Title: Hydrology and Earth System Sciences Discussions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.