LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves

Photo by benceboros from unsplash

Abstract. In many simulations of historical daily streamflow distributional bias arising from the distributional properties of residuals has been noted. This bias often presents itself as an underestimation of high… Click to show full abstract

Abstract. In many simulations of historical daily streamflow distributional bias arising from the distributional properties of residuals has been noted. This bias often presents itself as an underestimation of high streamflow and an overestimation of low streamflow. Here, 1168 streamgages across the conterminous USA, having at least 14 complete water years of daily data between 1 October 1980 and 30 September 2013, are used to explore a method for rescaling simulated streamflow to correct the distributional bias. Based on an existing approach that separates the simulated streamflow into components of temporal structure and magnitude, the temporal structure is converted to simulated nonexceedance probabilities and the magnitudes are rescaled using an independently estimated flow duration curve (FDC) derived from regional regression. In this study, this method is applied to a pooled ordinary kriging simulation of daily streamflow coupled with FDCs estimated by regional regression on basin characteristics. The improvement in the representation of high and low streamflows is correlated with the accuracy and unbiasedness of the estimated FDC. The method is verified by using an idealized case; however, with the introduction of regionally regressed FDCs developed for this study, the method is only useful overall for the upper tails, which are more accurately and unbiasedly estimated than the lower tails. It remains for future work to determine how accurate the estimated FDCs need to be to be useful for bias correction without unduly reducing accuracy. In addition to its potential efficacy for distributional bias correction, this particular instance of the methodology also represents a generalization of nonlinear spatial interpolation of daily streamflow using FDCs. Rather than relying on single index stations, as is commonly done to reflect streamflow timing, this approach to simulation leverages geostatistical tools to allow a region of neighbors to reflect streamflow timing.

Keywords: using independently; bias correction; streamflow; historical daily; daily streamflow

Journal Title: Hydrology and Earth System Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.