Abstract. Temporal and spatial precipitation information is key to conducting effective hydrological-process simulation and forecasting. Herein, we implemented a comprehensive evaluation of three selected precipitation products in the Jialing River… Click to show full abstract
Abstract. Temporal and spatial precipitation information is key to conducting effective hydrological-process simulation and forecasting. Herein, we implemented a comprehensive evaluation of three selected precipitation products in the Jialing River watershed (JRW) located in southwestern China. A number of indices were used to statistically analyze the differences between two open-access precipitation products (OPPs), i.e., Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Climate Prediction Center Gauge-Based Analysis of Global Daily Precipitation (CPC), and the rain gauge (Gauge). The three products were then categorized into subbasins to drive SWAT simulations. The results show the following. (1) The three products are highly consistent in temporal variation on a monthly scale yet distinct on a daily scale. CHIRPS is characterized by an overestimation of light rain, underestimation of heavy rain, and high probability of false alarm. CPC generally underestimates rainfall of all magnitudes. (2) Both OPPs satisfactorily reproduce the stream discharges at the JRW outlet with slightly worse performance than the Gauge model. Model with CHIRPS as inputs performed slightly better in both model simulation and fairly better in uncertainty analysis than that of CPC. On a temporal scale, the OPPs are inferior with respect to capturing flood peak yet superior at describing other hydrograph features, e.g., rising and falling processes and baseflow. On a spatial scale, CHIRPS offers the advantage of deriving smooth, distributed precipitation and runoff due to its high resolution. (3) The water balance components derived from SWAT models with equal simulated streamflow discharges are remarkably different between the three precipitation inputs. The precipitation spatial pattern results in an increasing surface flow trend from upstream to downstream. The results of this study demonstrate that with similar performance in simulating watershed runoff, the three precipitation datasets tend to conceal the identified dissimilarities through hydrological-model parameter calibration, which leads to different directions of hydrologic processes. As such, multiple-objective calibration is recommended for large and spatially resolved watersheds in future work. The main findings of this research suggest that the features of OPPs facilitate the widespread use of CHIRPS in extreme flood events and CPC in extreme drought analyses in future climate.
               
Click one of the above tabs to view related content.