LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Modelling of a Cable-Driven Parallel-Series Hybrid Variable Stiffness Joint Mechanism for Robotics

Photo from wikipedia

Abstract. The robotics, particularly the humanoid research field, needs new mechanisms to meet the criteria enforced by compliance, workspace requirements, motion profile characteristics and variable stiffness using lightweight but robust… Click to show full abstract

Abstract. The robotics, particularly the humanoid research field, needs new mechanisms to meet the criteria enforced by compliance, workspace requirements, motion profile characteristics and variable stiffness using lightweight but robust designs. The mechanism proposed herein is a solution to this problem by a parallel-series hybrid mechanism. The parallel term comes from two cable-driven plates supported by a compression spring in between. Furthermore, there is a two-part concentric shaft, passing through both plates connected by a universal joint. Because of the kinematic constraints of the universal joint, the mechanism can be considered as a serial chain. The mechanism has 4 degrees of freedom (DOF) which are pitch, roll, yaw motions and translational movement in z axis for stiffness adjustment. The kinematic model is obtained to define the workspace. The helical spring is analysed by using Castigliano's Theorem and the behaviour of bending and compression characteristics are presented which are validated by using finite element analysis (FEA). Hence, the dynamic model of the mechanism is derived depending on the spring reaction forces and moments. The motion experiments are performed to validate both kinematic and dynamic models. As a result, the proposed mechanism has a potential use in robotics especially in humanoid robot joints, considering the requirements of this robotic field.

Keywords: mechanism; parallel series; robotics; variable stiffness; series hybrid

Journal Title: Mechanical Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.