Given access to huge online collections of music on streaming platforms such as Spotify or Apple Music, users have become increasingly reliant on algorithmic recommender systems and automated curation and… Click to show full abstract
Given access to huge online collections of music on streaming platforms such as Spotify or Apple Music, users have become increasingly reliant on algorithmic recommender systems and automated curation and discovery features to find and curate music. Based on participant observation and semi-structured interviews with 15 active users of music streaming services, this article critically examines the user experience of music recommendation and streaming, seeking to understand how listeners interact with and experience these systems, and asking how recommendation and curation features define their use in a new and changing landscape of music consumption and discovery. This paper argues that through daily interactions with algorithmic features and curation, listeners build complex socio-technical relationships with these algorithmic systems, involving human-like factors such as trust, betrayal and intimacy. This article is significant as it positions music recommender systems as active agents in shaping music listening habits and the individual tastes of users.
               
Click one of the above tabs to view related content.