Background: Flavonoids are a large group of phenolic compounds possessing anti-inflammatory and antioxidant effects. NAR is a flavonoid with various pharmacological properties. Using pharmaceutical compounds on skin is one of… Click to show full abstract
Background: Flavonoids are a large group of phenolic compounds possessing anti-inflammatory and antioxidant effects. NAR is a flavonoid with various pharmacological properties. Using pharmaceutical compounds on skin is one of the routes of administration to achieve local and systemic effects. The aim of this study was to develop a topical formulation of NAR by the preparation of a NAR ME, which was further tested its skin permeability in rats. Methods: Eight 0.5% NAR MEs were prepared by mixing appropriate amounts of surfactant (Tween 80 and Labrasol), cosurfactant (Capryol 90) and the oil phase (oleic acid-Transcutol P in a ratio of 1:10). The drug was dissolved in the oil phase. The physicochemical properties of MEs such as droplet size, viscosity, release, and skin permeability were assessed using Franz Cells diffusion. Results: Based on the results, the droplet size of MEs ranged between 5.07 and 35.15 nm, and their viscosity was 164-291 cps. Independent factors exhibited a strong relationship with both permeability and drop size. The permeability findings revealed that the diffusion coefficient of NAR by the ME carrier increased compared to the drug saturation solution. Conclusion: The most validated results were obtained for Jss and particle size. Optimal formulations containing MEs with Jss and particle sizes varying between minimum and maximum amounts are suitable for topical formulations of NAR.
               
Click one of the above tabs to view related content.