LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Central composite design application in oil agglomeration of talc

Photo by primal_harmony from unsplash

Talc has many applications in various branches of industry. This material is an inert one with a naturally hydrophobic surface. Talc agglomeration is within the wide interest of pharmaceutical industry.… Click to show full abstract

Talc has many applications in various branches of industry. This material is an inert one with a naturally hydrophobic surface. Talc agglomeration is within the wide interest of pharmaceutical industry. Oil agglomeration experiments of talc were carried out to find out and assess the significance of experimental factors. Central composite design (CCD) was used to estimate the importance and interrelation of the agglomeration process parameters. Four experimental factors have been evaluated, i.e. concentration of cationic surfactant and oil, agitation intensity as well as time of the process. The median size of agglomerates (D50) and the polydispersity span (PDI) were used as the process responses. Logarithmic transformations of the responses provide better description of the model, than untransformed responses, with the reduced cubic model for D50 and quadratic model for PDI. This was supported by the Box-Cox plots. It was shown that there were many statistically important factors, including the concentration of cationic surfactant and stirring rate for D50, concentration of oil and stirring rate for PDI, as well as various interactions, up to third order for D50. Optimal conditions for minimum values of reagent amounts as well as mixing time and intensity for the maximum size of agglomerates but of rather narrow size distribution were found.

Keywords: agglomeration; central composite; oil agglomeration; composite design; oil

Journal Title: Physicochemical Problems of Mineral Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.