LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High frequency plant regeneration from leaf culture of Neolamarckia cadamba.

Neolamarckia cadamba is a miracle tree species with considerable economic potential uses as a timber wood, woody forage and traditional medicine resource. The present study aimed to establish a highly… Click to show full abstract

Neolamarckia cadamba is a miracle tree species with considerable economic potential uses as a timber wood, woody forage and traditional medicine resource. The present study aimed to establish a highly efficient and robust protocol of plant regeneration for N. cadamba. Greenish callus was induced from very young leaf explants of sterile in vitro plantlets cultured on Murashige and Skoog's (MS) medium supplemented with 3 mg l-1 thidiazuron (TDZ), 0.1 mg l-1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.05 mg l-1 α-naphthaleneacetic acid (NAA). The callus could differentiate into nodular embryogenic structures or adventitious shoots, and these two regeneration pathways often occurred in the same callus clumps. The micro-shoots developed roots in MS supplemented with 0.05 mg l-1 NAA and 0.05 mg l-1 indole-3-butyric acid (IBA), while the nodular embryogenic structures germinated directly and developed into plantlets on induction medium contained with 0.5 mg l-1 (or 1 mg l-1) 6-benzyladenine (6-BA) and 0.05 mg l-1 NAA. The rooted plantlets could be successfully acclimatized to a greenhouse with more than 92.0% survival. This regeneration protocol can be used in large scale cultivation needs and may be useful for future genetic modifications of N. cadamba.

Keywords: plant regeneration; cadamba; high frequency; neolamarckia cadamba; regeneration

Journal Title: Plant biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.