In this paper, using Bregman functions, we introduce new Halpern-type iterative algorithms for finding a solution of an equilibrium problem in Banach spaces. We prove the strong convergence of a… Click to show full abstract
In this paper, using Bregman functions, we introduce new Halpern-type iterative algorithms for finding a solution of an equilibrium problem in Banach spaces. We prove the strong convergence of a modified Halpern-type scheme to an element of the set of solution of an equilibrium problem in a reflexive Banach space. This scheme has an advantage that we do not use any Bregman projection of a point on the intersection of closed and convex sets in a practical calculation of the iterative sequence. Finally, some application of our results to the problem of finding a minimizer of a continuously Fr\'{e}chet differentiable and convex function in a Banach space is presented. Our results improve and generalize many known results in the current literature.
               
Click one of the above tabs to view related content.