In the present paper we study contact metric manifolds whose characteristic vector field $\xi$ belonging to the $k$-nullity distribution. First we consider concircularly pseudosymmetric $N(k)$-contact metric manifolds of dimension $(2n+1)$.… Click to show full abstract
In the present paper we study contact metric manifolds whose characteristic vector field $\xi$ belonging to the $k$-nullity distribution. First we consider concircularly pseudosymmetric $N(k)$-contact metric manifolds of dimension $(2n+1)$. Beside these, we consider Ricci solitons and gradient Ricci solitons on three dimensional $N(k)$-contact metric manifolds. As a consequence we obtain several results. Finally, an example is given.
               
Click one of the above tabs to view related content.