LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The challenge of extra-intra craniometry: a computer-assisted three-dimensional approach on the equine skull.

Photo by cadop from unsplash

BACKGROUND The topographical correlations between certain extracranial and intracranial osseous points of interest (POIs), and their age-related changes, are indispensable to know for a diagnostical or surgical access to intracranial… Click to show full abstract

BACKGROUND The topographical correlations between certain extracranial and intracranial osseous points of interest (POIs), and their age-related changes, are indispensable to know for a diagnostical or surgical access to intracranial structures; however, they are difficult to assess with conventional devices. MATERIALS AND METHODS In this pilot study, the 3-dimensional coordinates of extra-/intracranial POIs were determined, thus avoiding perspective distortions that used to be intrinsic problems in 2-dimensional morphometry. The data sets were then analysed by creating virtual triangles. The sizes, shapes, and positions of these triangles described the extent and the directions of the age-related shifts of the POIs. A selection of extracranial and intracranial POIs were marked on half skulls of four warmblood horses in two age groups (young: 6 weeks, n = 2; old: 14 and 17 years, n = 2). The x-, y-, and z-coordinates of these POIs were determined with a measurement arm (FaroArm Fusion, FARO Europe®). Direct distances between the POIs as well as their indirect distances on the x-, y-, and z-axis, and angles were calculated. RESULTS The analysed virtual triangles revealed that some parts of the skull grew in size, but did not change in shape/relative proportions (proportional type of growth, as displayed by POI A and POI B at the Arcus zygomaticus). The same POIs (A and B) remained in a very stable relationship to their closest intracranial POI at the Basis cranii on the longitudinal axis, however, shifted markedly in the dorso-lateral direction. In contrast, a disproportional growth of other parts of the cranium was, for example, related to POI C at the Crista nuchae, which shifted strongly in the caudal direction with age. A topographically stable reference point (so-called anchor point) at the Basis cranii was difficult to determine. CONCLUSIONS Two candidates (one at the Synchondrosis intersphenoidalis, another one at the Synchondrosis sphenooccipitalis) were relatively stable in their positions. However, the epicentre of (neuro-)cranial growth could only be pinpointed to an area between them.

Keywords: intra craniometry; challenge extra; skull; pois; age; extra intra

Journal Title: Folia morphologica
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.