BACKGROUND Degenerative changes caused by aging may affect the eye, especially the retina. Such changes occur as a part of normal physiological process and may be irreversible. The aim of… Click to show full abstract
BACKGROUND Degenerative changes caused by aging may affect the eye, especially the retina. Such changes occur as a part of normal physiological process and may be irreversible. The aim of the study was to demonstrate the influence of aging on the morphology of the retina to provide a basis to explain the pathogenesis of age-associated decline in visual acuity, scotopic and photopic sensitivity. MATERIALS AND METHODS Forty male albino rats were used and divided into four age groups (group I: age of cortical maturity, group II: middle-aged, group III: aged group and group IV: senile group). The rats were sacrificed, the eye balls were enucleated. Intra-vitreal injections of formalin for haematoxylin and eosin and immunohistochemical sections, glutaraldehyde for toluidine blue semithin and E/M ultra-thin sections were performed. Measurements and quantitative histomorphometric estimation of the layers of the retina were done. RESULTS Light microscopic examination revealed age-dependent attenuation of photoreceptor striations. Aged and senile groups presented pyknotic, widely- -spaced nuclei of the outer nuclear layer. The inner nuclear layer was thinned out to 2 or 3 cellular rows. Retinal capillaries showed progressive dilatation and congestion. Statistical analysis proved significant thinning of the retina with variable degrees of thinning of the constituting layers. Decreased arborisation with age was confirmed with quantification of synaptophysin-immunostained sections. Glial fibrillary acidic protein immunostaining revealed the picture of reactive gliosis. On the ultrastructural level, the retinal pigment epithelium exhibited major alterations with aging. Numerous phagosomes, lipofuscin and melanolipofusin granules appeared within the cells, together with exaggerated basal infoldings. The pho- toreceptor nuclei became degenerated and the perinuclear space was widened. CONCLUSIONS Rat retinae clearly undergo age-related morphological changes. Such changes provide a cellular base for explanation of decreased vision in humans with aging other than reflection errors. Effect of aging was not only qualitative, but also quantitative.
               
Click one of the above tabs to view related content.