LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nano-structured (Mo,Ti)C-C-Ni magnetic powder

Photo by galihnyb_06 from unsplash

Purpose: The paper presents the results of phase composition and magnetic properties of Mo-Ni-Ti-C nanostructured powders. The aim of this research is understanding the correlation between key magnetic properties and… Click to show full abstract

Purpose: The paper presents the results of phase composition and magnetic properties of Mo-Ni-Ti-C nanostructured powders. The aim of this research is understanding the correlation between key magnetic properties and the parameters that influence them in the nanostructured powders from Mo-Ni-Ti-C system. Design/methodology/approach: The powder samples were synthesised using modified sol-gel method. Obtained powder were subjected for composition and magnetic properties in a wide temperature range by means of Electron Paramagnetic Resonance (EPR) and magnetic susceptibility measurements. To study the phase composition X-ray diffraction were performed. The morphology of the powders were investigated by scanning electron microscopy (SEM). Findings: Different kinds of structural and magnetic phases have been found in the investigated compounds, e.g. (Mo, Ti)C, C, Ni. It was found that such different phases create different kinds of magnetic interactions, from paramagnetic, antiferromagnetic up to superparamagnetic. Significant magnetic anisotropy has been revealed for low temperatures, which lowers with temperature increase. Moreover, non-usual increasing of the magnetization as a function of temperature was observed. It suggests, that overall longrange AFM interaction may be responsible for the magnetic properties. Research limitations/implications: For the future work explanation which phases in Mo-Ni-Ti-C system are responsible for different kinds of magnetic interactions are planned. Practical implications: The composition of different kinds of phases may be controlled to tune magnetic properties of the nanostructured Mo-Ni-Ti-C systems. Originality/value: In this study, for the first time Mo-Ni-Ti-C nanostructured samples were prepared with different kinds of structural and magnetic phases, creating different kinds of magnetic interactions, from paramagnetic, antiferromagnetic up to superparamagnetic-like. The latter seems to be formed due to the presence of magnetic nanoparticles and longrange antiferromagnetic interactions dominating in the whole temperature range.

Keywords: different kinds; magnetic properties; nano structured; kinds magnetic; powder; magnetic interactions

Journal Title: Journal of achievements in materials and manufacturing engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.