To investigate the potential of application of marine cyanobacterium for concurrent biomass production and ammonium removal, Synechococcus sp. VDW was cultured under different conditions in medium containing varying concentrations of… Click to show full abstract
To investigate the potential of application of marine cyanobacterium for concurrent biomass production and ammonium removal, Synechococcus sp. VDW was cultured under different conditions in medium containing varying concentrations of NH4Cl. Response surface methodology (RSM) was then used to build a predictive model of the combined effects of independent variables (pH, inoculum size, ammonium concentration). At the optimum conditions of initial pH 7.4, inoculum size 0.17 (OD730) and ammonium concentration 10.5 mg L-1, the maximum ammonium removal and biomass productivity were about 95% and 34 mg L-1d-1, respectively, after seven days of cultivation. The result of fatty acid methyl ester (FAME) analysis showed that the major fatty acids were palmitic acid (C16:0), linoleic acid (C18:2 n6 cis), palmitoleic acid (C16:1) and oleic acid (C18:1 n9 cis), which accounted for more than 80% weight of total fatty acids. Further, analysis of neutral lipid accumulation using flow cytometry revealed that the mean of the fluorescence intensity increased under optimal conditions. These results indicate that Synechococcus sp. VDW has the potential for use for concurrent water treatment and production of biomass that can be applied as biofuel feedstock.
               
Click one of the above tabs to view related content.