Measurements of aroxyl (ArO・)-radical-scavenging rate constants (ksAOH) of antioxidants (AOHs) (i.e., α-, β-, γ-, δ-Tocopherol (TocH) and ubiquinol-10 (UQ10H2)) were performed in ethanol/chloroform/H2O (50/50/1, v/v) solution, using stopped-flow spectrophotometry. ksAOH… Click to show full abstract
Measurements of aroxyl (ArO・)-radical-scavenging rate constants (ksAOH) of antioxidants (AOHs) (i.e., α-, β-, γ-, δ-Tocopherol (TocH) and ubiquinol-10 (UQ10H2)) were performed in ethanol/chloroform/H2O (50/50/1, v/v) solution, using stopped-flow spectrophotometry. ksAOH values were measured not only for each AOH, but also for the mixtures of two AOHs (i.e., TocH and UQ10H2). ksTocH values for α-, β-, γ-, δ-TocH increased 1.21, 1.28, 1.55, and 1.19 times, respectively, under the coexistence of constant concentrations of UQ10H2. Similar measurements were performed for eight vegetable oils 1 - 8, containing different concentrations of α-, β-, γ-, δ-tocopherol (TocH) and -tocotrienol (Toc-3H). ksOil values of all eight vegetable oils 1 - 8 also increased 1.24 - 1.54 times under the coexistence of constant concentrations of UQ10H2. A new mechanism to explain the notable increase of ksAOH values under the coexistence of two kinds of phenolic AOHs was proposed. UV-vis absorption of α-, β-, γ-Toc · radicals, produced by reaction of α-, β-, γ-TocHs (or vegetable oils 1 - 8) with ArO ·, disappeared under the coexistence of TocHs (or oils) and UQ10H2, suggesting that the prooxidant reaction resulting from the presence of Toc · radicals is suppressed in the presence of UQ10H2.
               
Click one of the above tabs to view related content.