LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of imatinib administration on the mouse ovarian follicle count and levels of intra-ovarian proteins related to follicular quality

Photo from wikipedia

Objective The impact of imatinib, a tyrosine kinase inhibitor, on ovarian follicles and several proteins related to follicular function and apoptosis was investigated in mice. Methods Saline, cyclophosphamide (Cp; 50… Click to show full abstract

Objective The impact of imatinib, a tyrosine kinase inhibitor, on ovarian follicles and several proteins related to follicular function and apoptosis was investigated in mice. Methods Saline, cyclophosphamide (Cp; 50 or 75 mg/kg), or imatinib (7.5 or 15 mg/kg) was injected once intraperitoneally into female B6D2F1 mice (18 mice in each group). In multiple ovarian sections, the number of various types of follicles and the proportion of good-quality (G1) follicles were counted. The levels of six proteins (anti-Müllerian hormone [AMH], BCL-xL, BAX, acid sphingomyelinase [A-SMase], caspase-3, and α-smooth muscle actin [α-SMA]) within the whole ovaries were quantified using Western blots. Results Compared to the saline group, a significant reduction of the primordial follicle count was observed in the group treated with imatinib 7.5 and 15 mg/kg, as well as in the group treated with Cp 75 mg/kg. Administration of Cp significantly decreased the proportion of G1 primordial follicles, but administration of imatinib did not. No differences in the AMH, anti-apoptotic BCLX-L, pro-apoptotic BAX, and A-SMase levels in the ovarian tissues were observed among the five groups. However, caspase-3 and α-SMA levels were significantly higher in the imatinib and Cp groups than in the saline group. Conclusion The administration of imatinib to mice significantly reduced the primordial follicle count and increased the protein levels of caspase-3 and α-SMA. Our findings suggest that imatinib potentially exerts ovarian toxicity via apoptotic processes, similarly to Cp.

Keywords: group; imatinib; administration; follicle count

Journal Title: Clinical and Experimental Reproductive Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.