Logistic linear mixed models are widely used in experimental designs and genetic analyses of binary traits. Motivated by modern applications, we consider the case of many groups of random effects,… Click to show full abstract
Logistic linear mixed models are widely used in experimental designs and genetic analyses of binary traits. Motivated by modern applications, we consider the case of many groups of random effects, where each group corresponds to a variance component. When the number of variance components is large, fitting a logistic linear mixed model is challenging. Thus, we develop two efficient and stable minorization-maximization (MM) algorithms for estimating variance components based on a Laplace approximation of the logistic model. One of these leads to a simple iterative soft-thresholding algorithm for variance component selection using the maximum penalized approximated likelihood. We demonstrate the variance component estimation and selection performance of our algorithms by means of simulation studies and an analysis of real data.
               
Click one of the above tabs to view related content.