LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

De-biasing Particle Filtering for a Continuous Time Hidden Markov Model With a Cox Process Observation Model

Photo by jontyson from unsplash

We develop a (nearly) unbiased particle filtering algorithm for a specific class of continuous-time state-space models, such that (a) the latent process $X_t$ is a linear Gaussian diffusion; and (b)… Click to show full abstract

We develop a (nearly) unbiased particle filtering algorithm for a specific class of continuous-time state-space models, such that (a) the latent process $X_t$ is a linear Gaussian diffusion; and (b) the observations arise from a Poisson process with intensity $\lambda(X_t)$. The likelihood of the posterior probability density function of the latent process includes an intractable path integral. Our algorithm relies on Poisson estimates which approximate unbiasedly this integral. We show how we can tune these Poisson estimates to ensure that, with large probability, all but a few of the estimates generated by the algorithm are positive. Then replacing the negative estimates by zero leads to a much smaller bias than what would obtain through discretisation. We quantify the probability of negative estimates for certain special cases and show that our particle filter is effectively unbiased. We apply our method to a challenging 3D single molecule tracking example with a Born and Wolf observation model.

Keywords: observation model; continuous time; model; particle filtering; process

Journal Title: Statistica Sinica
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.