LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Milling in Hydrogen on Magnesium Hydride with a Hydride-Forming Titanium Additive

Photo from wikipedia

A hydride-forming element titanium (Ti) was selected as an additive to improve the hydrogen uptake and release properties of MgH2. The hydrogen uptake and release properties of three Ti-added MgH2… Click to show full abstract

A hydride-forming element titanium (Ti) was selected as an additive to improve the hydrogen uptake and release properties of MgH2. The hydrogen uptake and release properties of three Ti-added MgH2 alloys [named MgH2-xTi (x = 6, 12, and 15)] prepared by milling in hydrogen (reactive mechanical grinding) were investigated and those of MgH2-12Ti were studied in more detail because it had the highest initial hydrogen uptake and release rates and the largest quantities of hydrogen absorbed and released for 60 min. At the cycle number, n, of one (n = 1), MgH2-12Ti absorbed 4.01 wt.% H for 2.5 min and 6.39 wt.% H for 60 min at 573 K in 12 bar H2, having an effective hydrogen storage capacity of 6.39 wt.%. MgH2-12Ti released 0.44 wt.% H for 2.5 min and 1.86 wt.% H for 60 min at 593 K in 1.0 bar H2. γ-MgH2, TiH1.924, and MgO were formed during reactive mechanical grinding. We believe that the brute forces and tensile, compressive, or shear stresses, which are applied to the materials during reactive mechanical grinding, introduce imperfections, fabricate cracks, expose fresh and clean surfaces, decrease the particle size, and disperse the additive among the particles. The γ-MgH2, TiH1.924, and MgO formed during reactive mechanical grinding and their pulverization during reactive mechanical grinding are believed to make these effects stronger.

Keywords: mechanical grinding; hydrogen; reactive mechanical; hydride forming; milling hydrogen

Journal Title: Materials Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.