LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Powder Process with Photoresist for Ceramic Electronic Components

Photo from wikipedia

This chapter proposed a patterning process for ceramic electronic components. The proposed process uses a photoresist, and it is combined with the photolithography process and the printing process. By using… Click to show full abstract

This chapter proposed a patterning process for ceramic electronic components. The proposed process uses a photoresist, and it is combined with the photolithography process and the printing process. By using both technologies, a high-aspect-ratio and fine conductive pattern is achieved because the patterned photoresist hold the filling paste during the dry process. Moreover, a different material pattern in a ceramic sheet can be formed simultaneously when the photoresist covers on the ceramic sheet with a through-hole pattern. The examples of the patterning process and the fabricated pattern are shown. The fine conductive pattern was formed by using a liquid photoresist, and the line width and the thickness were 10.3 and 1.85 μm, respectively. In the ceramic pattern, the conductive paste and low-temperature co-fired ceramic (LTCC) slurry were filled to the ferrite sheet. As a result, the ceramic sheet that had three different materials was achieved. It realizes the miniature ceramic inductor suppressing the minor loop. However, the photoresist process showed some problems with the fine pattern and the different material pattern. These problems are solved by adjusting the viscosity and the composite ratio of the slurry. The optimization of the type and thickness of the photoresist is required.

Keywords: pattern; ceramic electronic; sheet; process; electronic components; photoresist

Journal Title: Powder Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.