LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DMAPT: Study of Data Mining and Machine Learning Techniques in Advanced Persistent Threat Attribution and Detection

Photo from wikipedia

Modern-day malware is intelligent enough to hide its presence and perform stealthy operations in the background. Advance Persistent Threat (APT) is one such kind of malware attack on sensitive corporate… Click to show full abstract

Modern-day malware is intelligent enough to hide its presence and perform stealthy operations in the background. Advance Persistent Threat (APT) is one such kind of malware attack on sensitive corporate and banking networks to stay there for a long time undetected. In real-time corporate networks, identifying the presence of intruders is a big challenging task for security experts. Recent APT attacks like Carbanak, The Big Bang, and Red Echo attack (targeting the Indian power sector) are ringing alarms globally. New data exfiltration methods and advancements in malware techniques are the two main reasons for rapid and robust APT evolution. Although many traditional and hybrid methods are available to detect this stealthy malware, the number of target-specific attacks are increasing rapidly at global level. Attackers have been crafting payloads resistant to malware sandbox environments so that traditional sandboxing techniques may not work with these APT malware detection. In this paper, we shed light on various Data Mining, Machine Learning techniques and frameworks used in both Attribution and Detection of APT malware. Added to this, our work highlight GAP analysis and need for paradigm shift in existing techniques to deal with evolving modern APT malware.

Keywords: detection; data mining; machine learning; persistent threat; malware; mining machine

Journal Title: Artificial Intelligence
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.