LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A complete monotonicity property of the multiple gamma function

Photo from academic.microsoft.com

We consider the following functions fn (x) = 1− ln x + lnGn (x +1) x and gn (x) = x Gn (x +1) x , x ∈ (0,∞), n… Click to show full abstract

We consider the following functions fn (x) = 1− ln x + lnGn (x +1) x and gn (x) = x Gn (x +1) x , x ∈ (0,∞), n ∈N, where Gn (z) = (Γn (z))(−1) and Γn is the multiple gamma function of order n. In this work, our aim is to establish that f (2n) 2n (x) and (ln g2n (x)) (2n) are strictly completely monotonic on the positive half line for any positive integer n. In particular, we show that f2(x) and g2(x) are strictly completely monotonic and strictly logarithmically completely monotonic respectively on (0,3]. As application, we obtain new bounds for the Barnes G-function. 2020 Mathematics Subject Classification. 33B15, 26D07. Manuscript received 2nd August 2020, revised and accepted 8th September 2020.

Keywords: complete monotonicity; completely monotonic; gamma function; function; multiple gamma

Journal Title: Comptes Rendus Mathematique
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.