Background: Hepatic stellate cells (HSCs) play a primary role in liver fibrogenesis. NOXs are the main origin of reactive oxygen species (ROS) in the liver. Among them, NOX1, NOX2, and… Click to show full abstract
Background: Hepatic stellate cells (HSCs) play a primary role in liver fibrogenesis. NOXs are the main origin of reactive oxygen species (ROS) in the liver. Among them, NOX1, NOX2, and NOX4 are expressed more in HSCs and are involved in the development of liver fibrosis. Quercetin, an abundant citrus flavonoid, is known to have beneficial effects on liver injury and hepatic fibrosis. Objectives: In this study, the effect of quercetin on NOX1, NOX2, and NOX4 expression and Smad3 phosphorylation induced by TGF-β in the human hepatic LX2 cell line was investigated. Methods: The cytotoxic effects of quercetin on the cells were determined by MTT assay. The cells were activated with 2 ng/mL of TGF-β for 24 h and then treated with different concentrations of Quercetin. The mRNA expression rates of NOX1, NOX2, NOX4, and phosphorylated Smad 3C (p-Smad3C) were analyzed using real-time polymerase chain reaction (PCR) and western blot assays. Results: TGF-β increased the mRNA expression of NOX1, NOX2, and NOX4 and the protein level of p-Smad3C in the LX2 cell line. Quercetin significantly decreased the mRNA expression of NOX1, NOX2, and NOX4 in the LX-2 cells. Moreover, quercetin significantly diminished the p-Smad3C level in the LX-2 cell line activated with TGF-β. Conclusions: Quercetin may be effective in improving hepatic fibrosis via the reduction of NOX1, NOX2, and NOX4 expression in activated HSCs. The main mechanism through which quercetin reduces the expression of these target genes may be related to the reduction of the p-Smad3C level.
               
Click one of the above tabs to view related content.