Bit swapping linear feedback shift register (BS-LFSR) is employed in a conventional linear feedback shirt register (LFSR) to reduce its power dissipation and enhance its performance. In this paper, an… Click to show full abstract
Bit swapping linear feedback shift register (BS-LFSR) is employed in a conventional linear feedback shirt register (LFSR) to reduce its power dissipation and enhance its performance. In this paper, an enhanced BS-LFSR for low power application is proposed. To achieve low power dissipation, the proposed BS-LFSR introduced the stacking technique to reduce leakage current. In addition, three different architectures to enhance the feedback element used in BS-LFSR was explored. The pass transistor merged with transistor stack method yielded a better reduction in power dissipation compared to pass transistor design and NAND gate design. The BS-LFSR was designed in Mentor Graphic – TSMC Design Kit Environment using 130nm complementary metal oxide semiconductor (CMOS) technology. The proposed 4-bit BS-LFSR achieved an active area of 1241.1588um2 and consumed only 53.8844nW with total power savings of 19.43%. The proposed design showed superiority when compared with the conventional LFSR and related work in reducing power dissipation and area.
               
Click one of the above tabs to view related content.