LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forecasting Participants in the All Women Count! Mammography Program

Photo by thinkmagically from unsplash

Introduction The All Women Count! (AWC!) program is a no-cost breast and cervical cancer screening program for qualifying women in South Dakota. Our study aimed to identify counties with similar… Click to show full abstract

Introduction The All Women Count! (AWC!) program is a no-cost breast and cervical cancer screening program for qualifying women in South Dakota. Our study aimed to identify counties with similar socioeconomic characteristics and to estimate the number of women who will use the program for the next 5 years. Methods We used AWC! data and sociodemographic predictor variables (eg, poverty level [percentage of the population with an annual income at or below 200% of the Federal Poverty Level], median income) and a mixture of Gaussian regression time series models to perform clustering and forecasting simultaneously. Model selection was performed by using Bayesian information criterion (BIC). Forecasting of the predictor variables was done by using an autoregressive integrated moving average model. Results By using BIC, we identified 5 clusters showing the groups of South Dakota counties with similar characteristics in terms of predictor variables and the number of participants. The mixture model identified groups of counties with increasing or decreasing trends in participation and forecast averages per cluster. Conclusion The mixture of regression time series model used in this study allowed for the identification of similar counties and provided a forecasting model for future years. Although several predictors contributed to program participation, we believe our forecasting analysis by county may provide useful information to improve the implementation of the AWC! program by informing program managers on the expected number of participants in the next 5 years. This, in turn, will help in data-driven resource allocation.

Keywords: program; model; women count; participants women; forecasting participants; predictor variables

Journal Title: Preventing Chronic Disease
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.