LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A neural network approach for predicting kinematic errors solutions for trochoidal machining in the matsuura MX-330 Five-axis Machine

Photo by cokdewisnu from unsplash

The prediction of machining accuracy of a Five-axis Machine tool is a vital process in precision manufacturing. This work presents a novel approach for predicting kinematic errors solutions in five… Click to show full abstract

The prediction of machining accuracy of a Five-axis Machine tool is a vital process in precision manufacturing. This work presents a novel approach for predicting kinematic errors solutions in five axis Machine. This approach is based on Artificial Neural Network (ANN) for trochoidal milling machining strategy. We proposed a multi-layer perceptron (MLP) model to find the inverse kinematics solution for a Five-axis Machine Matsuura MX-330. The data sets for the neural-network model is obtained using Matsuura MX-330 kinematics software. The solution of each neural network is estimated using inverse kinematics equation of the Machine tool to select the best one. As a result, the Neural Network implementation improves the performance of the learning process. In this work trochoidal trajectory generation formulation has been developed and simulated using the software Matlab Inc. The main advantage of the trochoidal path is to present a continuous path radius leading the machining process to take place under favorable conditions (no impact, less marking of the part, ...). Obtaining the toolpath is to allow programming of the toolpath according to ISO 6983 (which defines the principles of the G code). For this, numerical study of trochoidal strategy and experimental result are presented with aims to full milling and to ensure a control of radial engagement

Keywords: machine; five axis; kinematics; neural network; axis machine

Journal Title: FME Transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.