LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of Process Parameters for Total Phenol Extraction from Wood Waste using Response Surface Methodology

Photo by ry4nolson from unsplash

The aim of present study is to optimize the important parameters of total phenol extraction form Azadirachta indica wood using ethanol. Experiments were conducted based on the central composite rotatable… Click to show full abstract

The aim of present study is to optimize the important parameters of total phenol extraction form Azadirachta indica wood using ethanol. Experiments were conducted based on the central composite rotatable design (CCRD) and the models were constructed using response surface methodology (RSM). Response Surface Methodology (RSM) was employed for optimization of influencing factors such quantity of wood, temperature and extraction time in total phenol extraction using ethanol as solvent. The levels of mentioned parameters were in the range 1-5% of quantity of wood, 20-60°C of temperature and 1-5 days of extraction time were evaluated. The optimization of individual parameters were determined the 5% for quantity of wood, 50°C for temperature and 4 days for incubation time as central values. Based on the central values, 17 experiments were designed and experimentally conducted. The responses of 17 experiments were used for optimization. The best optimal condition of total phenol extraction was determined as quantity of wood 4.55 %, temperature 59.24°C and extraction time 3.92 days with extraction yield 0.958 mg Gallic acid equivalents (GAE)/g of dry powder. The phenolic extract quality was evaluated using thin layer chromatography and GC-MS analysis. The extract shows good anti-bacterial activity against E. coli and S. aureus.

Keywords: optimization; methodology; total phenol; phenol extraction; wood; extraction

Journal Title: Research Journal of Pharmacy and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.