Photovoltaic (PV) systems are influenced by disproportionate impacts on energy production caused by frequent mismatch cases. The occurrence of multiple maximum power points (MPPs) adds complexity to the tracking process… Click to show full abstract
Photovoltaic (PV) systems are influenced by disproportionate impacts on energy production caused by frequent mismatch cases. The occurrence of multiple maximum power points (MPPs) adds complexity to the tracking process in various PV systems. However, current maximum-power point tracking (MPPT) techniques exhibit limited performance. This paper introduces an enhanced simulated annealing (ESA)-based GMPPT technique against multiple MPP issues in P–V curve with different PV system structures. The proposed technique not only distinguishes global and local MPPs but also performs rapid convergence speed and high tracking accuracy of irradiance changing and restart capability detection. Moreover, the proposed global maximum power tracking algorithm can be applied in the central converter of DMPPT and hybrid PV system to meet various application scenarios. Its effectiveness is verified by simulation and test results.
               
Click one of the above tabs to view related content.