LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional requirements for a Samd14-capping protein complex in stress erythropoiesis

Photo by elisa_ventur from unsplash

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals – involving cooperation between SCF/c-Kit signaling and other signaling inputs – are required for… Click to show full abstract

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals – involving cooperation between SCF/c-Kit signaling and other signaling inputs – are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system and promotes stress-dependent c-Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein- protein interaction between Samd14 and the α- and β heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/c-kit signaling in CD71med spleen erythroid precursors. Given the roles of c-Kit signaling in hematopoiesis and Samd14 in c-Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.

Keywords: protein complex; stress; kit signaling; capping protein; stress erythropoiesis; protein

Journal Title: eLife
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.