LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Long-Range Coulomb Interaction on NMR Shift in Massless Dirac Electrons of Organic Conductor

Photo by itfeelslikefilm from unsplash

The nuclear magnetic resonance (NMR) shift, χα, at low temperatures is examined for massless Dirac electrons in the organic conductor, α-(BEDT-TTF)2I3, where α [= A (= A′), B, and C]… Click to show full abstract

The nuclear magnetic resonance (NMR) shift, χα, at low temperatures is examined for massless Dirac electrons in the organic conductor, α-(BEDT-TTF)2I3, where α [= A (= A′), B, and C] denotes the sites of the four molecules in the unit cell. The Dirac cone exists within an energy of 0.01 eV between the conduction and valence bands. The magnetic response function is calculated by taking account of the long-range Coulomb interaction and electron doping. Calculating the interaction within the first order in the perturbation, the chemical potential is determined self-consistently, and the self-energy and vertex corrections are taken to satisfy the Ward identity. The site-dependent χα is calculated at low temperatures of 0.0002 < T < 0.002 (T is temperature in the unit of eV) by correctly treating the wave function of the Dirac cone. At lower (higher) temperatures the self-energy (vertex) correction of χα at all sites except for B is dominant and the sign is negative (positive), while the sign of the correction...

Keywords: nmr shift; interaction; organic conductor; dirac electrons; electrons organic; massless dirac

Journal Title: Journal of the Physical Society of Japan
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.