LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Darboux Transformation and Soliton Solutions of the Generalized Sasa–Satsuma Equation

Photo by saadahmad_umn from unsplash

The Sasa-Satsuma equation, a higher-order nonlinear Schr\"{o}dinger equation, is an important integrable equation, which displays the propagation of femtosecond pulses in optical fibers. In this paper, we investigate a generalized… Click to show full abstract

The Sasa-Satsuma equation, a higher-order nonlinear Schr\"{o}dinger equation, is an important integrable equation, which displays the propagation of femtosecond pulses in optical fibers. In this paper, we investigate a generalized Sasa-Satsuma(gSS) equation. The Darboux transformation(DT) for the focusing and defocusing gSS equation is constructed. By using the DT, various of soliton solutions for the generalized Sasa-Satsuma equation are derived, including hump-type, breather-type and periodic soliton. Dynamics properties and asymptotic behavior of these soliton solutions are analyzed. Infinite number conservation laws and conserved quantities for the gSS equation are obtained.

Keywords: equation; satsuma equation; generalized sasa; soliton solutions; sasa satsuma

Journal Title: Journal of the Physical Society of Japan
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.