We study the correlation between crystal quality and electrical transport in 4H-SiC by micro-photoluminescence and laser-beam-induced photocurrent measurements. A focused HeCd laser at 325 nm has been employed to simultaneously… Click to show full abstract
We study the correlation between crystal quality and electrical transport in 4H-SiC by micro-photoluminescence and laser-beam-induced photocurrent measurements. A focused HeCd laser at 325 nm has been employed to simultaneously measure, with a spatial resolution of a few microns, both the photoluminescence and current–voltage characteristics of 4H-SiC Schottky diodes. We found that the laser-induced photocurrent acquired along a defect can give information on its spatial distribution in depth and that the local minority carrier lifetime and generation depend on the type of stacking fault, both decreasing for defects with deeper intragap levels.
               
Click one of the above tabs to view related content.