LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable multiband polarization conversion and manipulation in vanadium dioxide-based asymmetric chiral metamaterial

Tunable multiband polarization conversion and manipulation are achieved by introducing vanadium dioxide (VO2) into a planar spiral asymmetric chiral metamaterial. Numerical simulations demonstrate that when VO2 is in the insulating… Click to show full abstract

Tunable multiband polarization conversion and manipulation are achieved by introducing vanadium dioxide (VO2) into a planar spiral asymmetric chiral metamaterial. Numerical simulations demonstrate that when VO2 is in the insulating state, circularly polarized electromagnetic waves are emitted at two distinct resonant frequencies. When VO2 is in the metallic state, the number of resonant frequencies changes from two to four. In addition, the initial left-handed and right-handed circularly polarized transmitted waves correspondingly transform into right and left ones. Moreover, the surface current distributions are studied in order to investigate the transformation behaviors of both the insulating and metallic states.

Keywords: conversion manipulation; multiband polarization; asymmetric chiral; polarization conversion; vanadium dioxide; tunable multiband

Journal Title: Applied Physics Express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.