LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide

Photo from wikipedia

We present a design of an ultra-fast in-line graphene optical modulator on a silicon waveguide with a bandwidth exceeding 100 GHz, very small power consumption below 15 fJ/bit, and insertion… Click to show full abstract

We present a design of an ultra-fast in-line graphene optical modulator on a silicon waveguide with a bandwidth exceeding 100 GHz, very small power consumption below 15 fJ/bit, and insertion loss of 1.5 dB. This is achieved by utilizing the transverse-electric-mode silicon slot to tailor the overlap of graphene electrodes, thus significantly reducing the capacitance of the device while maintaining a low insertion loss and using conservative estimates of the graphene resistance. Our design is substantiated by comprehensive finite-element-method simulations and RC circuit characterization, as well as fabrication feasibility discussion.

Keywords: slot; graphene optical; ultra high; optical modulator; design

Journal Title: Applied Physics Express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.