LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the secrecy performance of transmit-receive diversity and spatial multiplexing systems

Photo from wikipedia

Emerging from the information-theoretic characterization of secrecy, physical-layer security exploits the physical properties of the wireless channel for security purpose. In recent years, a great deal of attention has been… Click to show full abstract

Emerging from the information-theoretic characterization of secrecy, physical-layer security exploits the physical properties of the wireless channel for security purpose. In recent years, a great deal of attention has been paid to investigating the physical-layer security issues in multiple-input multiple-output (MIMO) wireless communications. This paper analyzes the secrecy performance of transmit-receive diversity system and spatial multiplexing systems with zero-forcing equalization and minimum mean-square-error equalization. Specifically, exact and asymptotic closed-form expressions are derived for the secrecy outage probability of such MIMO systems in a Rayleigh fading environment, and the corresponding secrecy diversity orders and secrecy array gains are determined. Numerical results are presented to corroborate the analytical results and to examine the impact of various system parameters, including the numbers of antennas at the transmitter, the legitimate receiver, and the eavesdropper. These contributions bring about valuable insights into the physical-layer security in MIMO wireless systems.

Keywords: secrecy performance; transmit receive; receive diversity; spatial multiplexing; diversity; performance transmit

Journal Title: PeerJ Computer Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.