LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Latent based temporal optimization approach for improving the performance of collaborative filtering

Photo from wikipedia

Recommendation systems suggest peculiar products to customers based on their past ratings, preferences, and interests. These systems typically utilize collaborative filtering (CF) to analyze customers’ ratings for products within the… Click to show full abstract

Recommendation systems suggest peculiar products to customers based on their past ratings, preferences, and interests. These systems typically utilize collaborative filtering (CF) to analyze customers’ ratings for products within the rating matrix. CF suffers from the sparsity problem because a large number of rating grades are not accurately determined. Various prediction approaches have been used to solve this problem by learning its latent and temporal factors. A few other challenges such as latent feedback learning, customers’ drifting interests, overfitting, and the popularity decay of products over time have also been addressed. Existing works have typically deployed either short or long temporal representation for addressing the recommendation system issues. Although each effort improves on the accuracy of its respective benchmark, an integrative solution that could address all the problems without trading off its accuracy is needed. Thus, this paper presents a Latent-based Temporal Optimization (LTO) approach to improve the prediction accuracy of CF by learning the past attitudes of users and their interests over time. Experimental results show that the LTO approach efficiently improves the prediction accuracy of CF compared to the benchmark schemes.

Keywords: collaborative filtering; temporal optimization; based temporal; approach; latent based

Journal Title: PeerJ Computer Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.