LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative analysis of magnetic induction based communication techniques for wireless underground sensor networks

Photo from wikipedia

A large range of applications have been identified based upon the communication of underground sensors deeply buried in the soil. The classical electromagnetic wave (EM) approach, which works well for… Click to show full abstract

A large range of applications have been identified based upon the communication of underground sensors deeply buried in the soil. The classical electromagnetic wave (EM) approach, which works well for terrestrial communication in air medium, when applied for this underground communication, suffers from significant challenges attributing to signal absorption by rocks, soil, or water contents, highly varying channel condition caused by soil characteristics, and requirement of big antennas. As a strong alternative of EM, various magnetic induction (MI) techniques have been introduced. These techniques basically depend upon the magnetic induction between two coupled coils associated with transceiver sensor nodes. This paper elaborates on three basic MI communication mechanisms i.e. direct MI transmission, MI waveguide transmission, and 3D coil MI communication with detailed discussion of their working mechanism, advantages and limitations. The comparative analysis of these MI techniques with each other as well as with EM wave method will facilitate the users in choosing the best method to offer enhanced transmission range (upto 250 m), reduced path loss (<100 dB), channel reliability, working bandwidth (1–2 kHz), & omni-directional coverage to realize the promising MI-based wireless underground sensor network (WUSN) applications.

Keywords: comparative analysis; communication; magnetic induction; wireless underground; underground sensor

Journal Title: PeerJ Computer Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.