LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-label emotion classification of Urdu tweets

Photo from wikipedia

Urdu is a widely used language in South Asia and worldwide. While there are similar datasets available in English, we created the first multi-label emotion dataset consisting of 6,043 tweets… Click to show full abstract

Urdu is a widely used language in South Asia and worldwide. While there are similar datasets available in English, we created the first multi-label emotion dataset consisting of 6,043 tweets and six basic emotions in the Urdu NastalĂ­q script. A multi-label (ML) classification approach was adopted to detect emotions from Urdu. The morphological and syntactic structure of Urdu makes it a challenging problem for multi-label emotion detection. In this paper, we build a set of baseline classifiers such as machine learning algorithms (Random forest (RF), Decision tree (J48), Sequential minimal optimization (SMO), AdaBoostM1, and Bagging), deep-learning algorithms (Convolutional Neural Networks (1D-CNN), Long short-term memory (LSTM), and LSTM with CNN features) and transformer-based baseline (BERT). We used a combination of text representations: stylometric-based features, pre-trained word embedding, word-based n-grams, and character-based n-grams. The paper highlights the annotation guidelines, dataset characteristics and insights into different methodologies used for Urdu based emotion classification. We present our best results using micro-averaged F1, macro-averaged F1, accuracy, Hamming loss (HL) and exact match (EM) for all tested methods.

Keywords: label emotion; emotion classification; emotion; multi label

Journal Title: PeerJ Computer Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.