LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of oxide scale structure on shot-blasting of hot-rolled strip steel

Background: The effect of oxide scale composition of hot-rolled strip (Q235) on shot blasting is studied in this article. The properties of the oxide scale on the strip surface change… Click to show full abstract

Background: The effect of oxide scale composition of hot-rolled strip (Q235) on shot blasting is studied in this article. The properties of the oxide scale on the strip surface change during storage. The shot blasting is an important on-line acid-less descaling technology. The effect of shot blasting is affected by many factors, among which the composition of oxide scale may play an important role. However, there are few studies on the relationship between the oxide layer content and the descaling effect. Methods: The morphologies of oxide scales at different storage times are observed by scanning electron microscopy (SEM), and the compositions are analyzed by X-ray diffraction. These strips are then shot blasted and descaled with different amounts of abrasive, and the descaling effects are compared by SEM. Results: The results show that the eutectoid structure Fe3O4/Fe in the oxide scale will gradually transform into Fe3O4. In the case of short storage time, the content of the eutectoid structure is high, and it is difficult to remove the oxide scale. While the strip with a long storage time has no eutectoid structure Fe3O4/Fe and FeO, it is easy to remove the oxide scale during the shot blasting process. The composition of the oxide scale has a significant effect on the effect of shot blasting, and it provides significant guidance to the optimization of the descaling process parameters. Subjects Alloys, Materials Science (other)

Keywords: shot blasting; strip; oxide scale; structure; effect

Journal Title: PeerJ
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.