LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soil carbon sequestration potential in global croplands

Photo from wikipedia

Improving the amount of organic carbon in soils is an attractive alternative to partially mitigate climate change. However, the amount of carbon that can be potentially added to the soil… Click to show full abstract

Improving the amount of organic carbon in soils is an attractive alternative to partially mitigate climate change. However, the amount of carbon that can be potentially added to the soil is still being debated, and there is a lack of information on additional storage potential on global cropland. Soil organic carbon (SOC) sequestration potential is region-specific and conditioned by climate and management but most global estimates use fixed accumulation rates or time frames. In this study, we model SOC storage potential as a function of climate, land cover and soil. We used 83,416 SOC observations from global databases and developed a quantile regression neural network to quantify the SOC variation within soils with similar environmental characteristics. This allows us to identify similar areas that present higher SOC with the difference representing an additional storage potential. We estimated that the topsoils (0–30 cm) of global croplands (1,410 million hectares) hold 83 Pg C. The additional SOC storage potential in the topsoil of global croplands ranges from 29 to 65 Pg C. These values only equate to three to seven years of global emissions, potentially offsetting 35% of agriculture’s 85 Pg historical carbon debt estimate due to conversion from natural ecosystems. As SOC store is temperature-dependent, this potential is likely to reduce by 14% by 2040 due to climate change in a “business as usual” scenario. The results of this article can provide a guide to areas of focus for SOC sequestration, and highlight the environmental cost of agriculture.

Keywords: global croplands; carbon; sequestration; potential global; storage potential

Journal Title: PeerJ
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.