LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lack of a genetic cline and temporal genetic stability in an introduced barnacle along the Pacific coast of Japan

Photo from wikipedia

Background Large numbers of exotic marine species have been introduced worldwide. Monitoring of introduced species is important to reveal mechanisms underlying their establishment and expansion. Balanus glandula is a common… Click to show full abstract

Background Large numbers of exotic marine species have been introduced worldwide. Monitoring of introduced species is important to reveal mechanisms underlying their establishment and expansion. Balanus glandula is a common intertidal barnacle native to the northeastern Pacific. However, this species has been introduced to Japan, South America, South Africa, and Europe. While a latitudinal genetic cline is well known in its native range, it is unclear whether such a genetic cline occurs in introduced areas. Twenty years have passed since it was first identified in Japan and its distribution now ranges from temperate to subarctic regions. Methods In the present study, we examined genotypes of cytochrome oxidase subunit I (COI) of mitochondrial (mt)-DNA and elongation factor 1a (EF1) across the distribution of B. glandula in Japan at high and mid intertidal zones. Results At all sampling sites, native northern genotypes are abundant and I did not detect significant effects of latitude, tide levels, or their interaction on genotypic frequencies. Further, I did not detect any change of genotype composition between data collected during a study in 2004 and samples in the present study collected in 2019. Data from the present study offer an important baseline for future monitoring of this species and supply valuable insights into the mechanisms of establishment and expansion of introduced marine species generally.

Keywords: pacific; genetic cline; barnacle; japan; study

Journal Title: PeerJ
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.