LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated mapping of Portulacaria afra canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery

Photo by egor_vikhrev from unsplash

Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to… Click to show full abstract

Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to accurately quantify restoration success over hundreds to thousands of hectares. Recent advances in remote sensing technologies paired with deep learning algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at spatial and temporal scales. Such data can feed directly into adaptive management practices and provide insights into restoration and regeneration dynamics. Here, we demonstrate that convolutional neural network (CNN) segmentation algorithms can accurately classify the canopy cover of Portulacaria afra Jacq. in imagery acquired using different models of unoccupied aerial vehicles (UAVs) and under variable light intensities. Portulacaria afra is the target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is challenging to measure due to the dense, tangled structure of this vegetation. The automated classification strategy presented here is widely transferable to restoration monitoring as its application does not require any knowledge of the CNN model or specialist training, and can be applied to imagery generated by a range of UAV models. This will reduce the sampling effort required to track restoration trajectories in space and time, contributing to more effective management of restoration sites, and promoting collaboration between scientists, practitioners and landowners.

Keywords: restoration; portulacaria afra; convolutional neural; restoration monitoring; imagery

Journal Title: PeerJ
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.