LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The National Early Warning Score and its subcomponents recorded within ±24 h of emergency medical admission are poor predictors of hospital-acquired acute kidney injury

Photo from wikipedia

ABSTRACT Hospital-acquired acute kidney injury (H-AKI) is a common cause of avoidable morbidity and mortality. Therefore, in the current study, we investigated whether vital signs data from patients, as defined… Click to show full abstract

ABSTRACT Hospital-acquired acute kidney injury (H-AKI) is a common cause of avoidable morbidity and mortality. Therefore, in the current study, we investigated whether vital signs data from patients, as defined by a National Early Warning Score (NEWS), can predict H-AKI following emergency admission to hospital. We analysed all emergency admissions (n=33,608) to York Hospital with NEWS data over a 24-month period. Here, we report the area under the curve (AUC) for logistic regression models that used the index NEWS (model A0), plus age and sex (A1), plus subcomponents of NEWS (A2) and two-way interactions (A3), and similarly for maximum NEWS (models B0,B1,B2,B3). Of the total emergency admissions, 4.05% (1,361/33,608) had H-AKI. Models using the index NEWS had lower AUCs (0.59–0.68) than models using the maximum NEWS AUCs (0.75–0.77). The maximum NEWS model (B3) was more sensitive than the index NEWS model (A0) (67.60% vs 19.84%) but identified twice as many cases as being at risk of H-AKI (9581 vs 4099) at a NEWS of 5. Based on these results, we suggest that the index NEWS is a poor predictor of H-AKI. The maximum NEWS is a better predictor but appears to be unfeasible because it is only knowable in retrospect and is associated with a substantial increase in workload, albeit with improved sensitivity.

Keywords: news; kidney injury; acquired acute; emergency; acute kidney; hospital acquired

Journal Title: Clinical Medicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.