Sign Up to like & get
recommendations!
1
Published in 2019 at "Fractional Calculus and Applied Analysis"
DOI: 10.1515/fca-2019-0074
Abstract: Abstract In this paper we study the Dirichlet eigenvalue problem −Δpu−ΔJ,pu=λ|u|p−2u in Ω,u=0 in Ωc=RN∖Ω.$$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is a bounded domain in ℝN,…
read more here.
Keywords:
begin array;
array;
array displaystyle;
end array ... See more keywords
Sign Up to like & get
recommendations!
0
Published in 2020 at "Mathematica Slovaca"
DOI: 10.1515/ms-2017-0386
Abstract: Abstract Let Hn+ $\begin{array}{} \displaystyle H_{n}^{+} \end{array}$(ℝ) be the cone of all positive semidefinite (symmetric) n × n real matrices. Matrices from Hn+ $\begin{array}{} \displaystyle H_{n}^{+} \end{array}$(ℝ) play an important role in many areas of…
read more here.
Keywords:
begin array;
array displaystyle;
real matrices;
end array ... See more keywords