Sign Up to like & get
recommendations!
1
Published in 2017 at "Mathematical Methods in The Applied Sciences"
DOI: 10.1002/mma.4235
Abstract: In this paper, we discuss two inverse problems for differential pencils with boundary conditions dependent on the spectral parameter. We will prove the Hochstadt–Lieberman type theorem of (1)–(2) except for arbitrary one eigenvalue and the…
read more here.
Keywords:
differential pencils;
boundary conditions;
conditions dependent;
dependent spectral ... See more keywords
Sign Up to like & get
recommendations!
1
Published in 2020 at "Science China Mathematics"
DOI: 10.1007/s11425-018-9485-3
Abstract: The partial inverse problem for differential pencils on a star-shaped graph is studied from mixed spectral data. More precisely, we show that if the potentials on all edges on the star-shaped graph but one are…
read more here.
Keywords:
shaped graph;
differential pencils;
star shaped;
inverse problem ... See more keywords
Sign Up to like & get
recommendations!
0
Published in 2019 at "Boundary Value Problems"
DOI: 10.1186/s13661-019-1262-5
Abstract: In this paper, we are concerned with the inverse spectral problems for differential pencils defined on [0,π]$[0,\pi ]$ with an interior discontinuity. We prove that two potential functions are determined uniquely by one spectrum and…
read more here.
Keywords:
spectral data;
pencils impulse;
differential pencils;
impulse interior ... See more keywords
Sign Up to like & get
recommendations!
0
Published in 2018 at "Analysis"
DOI: 10.1515/anly-2018-0047
Abstract: Abstract In this work, the interior spectral data is employed to study the inverse problem for a differential pencil with a discontinuity on the half line. By using a set of values of the eigenfunctions…
read more here.
Keywords:
spectral data;
differential pencils;
result differential;
interior spectral ... See more keywords