Sign Up to like & get
recommendations!
0
Published in 2017 at "Periodica Mathematica Hungarica"
DOI: 10.1007/s10998-016-0162-z
Abstract: Let m be a positive integer, and let p be a prime with $$p \equiv 1~(\mathrm{mod}~4).$$p≡1(mod4). Then we show that the exponential Diophantine equation $$(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$$(3pm2-1)x+(p(p-3)m2+1)y=(pm)z has only the positive integer solution $$(x, y, z)=(1, 1,…
read more here.
Keywords:
3pm 3pm2;
exponential diophantine;
diophantine equation;
equation 3pm ... See more keywords