Sign Up to like & get
recommendations!
0
Published in 2020 at "Advances in Mathematics"
DOI: 10.1016/j.aim.2020.107193
Abstract: Geometric and functional Brunn-Minkowski type inequalities for the lattice point enumerator $\mathrm{G}_n(\cdot)$ are provided. In particular, we show that $$\mathrm{G}_n((1-\lambda)K + \lambda L + (-1,1)^n)^{1/n}\geq (1-\lambda)\mathrm{G}_n(K)^{1/n}+\lambda\mathrm{G}_n(L)^{1/n}$$ for any non-empty bounded sets $K, L\subset\mathbb{R}^n$ and all…
read more here.
Keywords:
brunn minkowski;
type inequalities;
lattice point;
lambda ... See more keywords