Sign Up to like & get
recommendations!
0
Published in 2018 at "Bulletin of the Australian Mathematical Society"
DOI: 10.1017/s0004972718001065
Abstract: Let $q\geq 1$ be any integer and let $\unicode[STIX]{x1D716}\in [\frac{1}{11},\frac{1}{2})$ be a given real number. We prove that for all primes $p$ satisfying $$\begin{eqnarray}p\equiv 1\!\!\!\!\hspace{0.6em}({\rm mod}\hspace{0.2em}q),\quad \log \log p>\frac{2\log 6.83}{1-2\unicode[STIX]{x1D716}}\quad \text{and}\quad \frac{\unicode[STIX]{x1D719}(p-1)}{p-1}\leq \frac{1}{2}-\unicode[STIX]{x1D716},\end{eqnarray}$$ there exists…
read more here.
Keywords:
nonprimitive roots;
stix x1d716;
frac;
nonresidues nonprimitive ... See more keywords