Articles with "number clusters" as a keyword



Photo from wikipedia

Estimating the Optimal Number of Clusters Via Internal Validity Index

Sign Up to like & get
recommendations!
Published in 2021 at "Neural Processing Letters"

DOI: 10.1007/s11063-021-10427-8

Abstract: Estimating the optimal number of clusters (NC) is pivotal in cluster analysis. From the viewpoint of sample geometry, a novel internal clustering validity index, which is termed the between-within cluster (BWC) index, is designed in… read more here.

Keywords: data sets; number clusters; index; optimal number ... See more keywords
Photo from wikipedia

Automatically finding the number of clusters based on simulated annealing

Sign Up to like & get
recommendations!
Published in 2017 at "Journal of Shanghai Jiaotong University (Science)"

DOI: 10.1007/s12204-017-1813-9

Abstract: Based on simulated annealing (SA), automatically finding the number of clusters (AFNC) is proposed in this paper to determine the number of clusters and their initial centers. It is a simple and automatic method that… read more here.

Keywords: number clusters; mountain; based simulated; automatically finding ... See more keywords
Photo from archive.org

Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth

Sign Up to like & get
recommendations!
Published in 2019 at "Data Science and Engineering"

DOI: 10.1007/s41019-019-0091-y

Abstract: This paper proposes a new method called depth difference (DeD), for estimating the optimal number of clusters (k) in a dataset based on data depth. The DeD method estimates the k parameter before actual clustering… read more here.

Keywords: optimal number; depth; number clusters; estimating optimal ... See more keywords
Photo by campaign_creators from unsplash

A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling

Sign Up to like & get
recommendations!
Published in 2019 at "Journal of Statistical Computation and Simulation"

DOI: 10.1080/00949655.2019.1643345

Abstract: ABSTRACT In this paper, we consider a Bayesian mixture model that allows us to integrate out the weights of the mixture in order to obtain a procedure in which the number of clusters is an… read more here.

Keywords: number clusters; bayesian mixture; data driven; model ... See more keywords
Photo from wikipedia

Cluster randomized trials with a small number of clusters: which analyses should be used?

Sign Up to like & get
recommendations!
Published in 2018 at "International journal of epidemiology"

DOI: 10.1093/ije/dyy057

Abstract: Background: Cluster randomised trials (CRTs) are increasingly used to assess the effectiveness of health interventions. Three main analysis approaches are: cluster-level analyses, mixed-models and generalized estimating equations (GEEs). Mixed models and GEEs can lead to… read more here.

Keywords: number clusters; cluster level; small number; cluster ... See more keywords
Photo by kellysikkema from unsplash

Nonnegative Matrix Factorization Based Consensus for Clusterings With a Variable Number of Clusters

Sign Up to like & get
recommendations!
Published in 2018 at "IEEE Access"

DOI: 10.1109/access.2018.2874038

Abstract: Consensus clustering is an aggregation of base clusterings into an ensemble clustering which is better than the individual base clusterings. It is beneficial to determine the clusters from heterogeneous data. This paper presents a new… read more here.

Keywords: number clusters; base clusterings; consensus; base ... See more keywords
Photo by kellysikkema from unsplash

A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm

Sign Up to like & get
recommendations!
Published in 2018 at "IEEE Access"

DOI: 10.1109/access.2018.2884956

Abstract: In 1993, Krishnapuram and Keller first proposed possibilistic C-means (PCM) clustering by relaxing the constraint in fuzzy C-means of which memberships for a data point across classes sum to 1. The PCM algorithm tends to… read more here.

Keywords: number clusters; algorithm; possibilistic means; pcm algorithm ... See more keywords
Photo by campaign_creators from unsplash

Automatic Fuzzy Clustering Using Non-Dominated Sorting Particle Swarm Optimization Algorithm for Categorical Data

Sign Up to like & get
recommendations!
Published in 2019 at "IEEE Access"

DOI: 10.1109/access.2019.2927593

Abstract: Categorical data clustering has been attracted a lot of attention recently due to its necessary in the real-world applications. Many clustering methods have been proposed for categorical data. However, most of the existing algorithms require… read more here.

Keywords: fuzzy clustering; automatic fuzzy; categorical data; number clusters ... See more keywords
Photo by kellysikkema from unsplash

A Centroid Auto-Fused Hierarchical Fuzzy c-Means Clustering

Sign Up to like & get
recommendations!
Published in 2021 at "IEEE Transactions on Fuzzy Systems"

DOI: 10.1109/tfuzz.2020.2991306

Abstract: Like k-means and Gaussian mixture model (GMM), fuzzy c-means (FCM) with soft partition has also become a popular clustering algorithm and still is extensively studied. However, these algorithms and their variants still suffer from some… read more here.

Keywords: number clusters; number; fuzzy means; caf hfcm ... See more keywords
Photo from wikipedia

Subspace Clustering of Categorical and Numerical Data With an Unknown Number of Clusters

Sign Up to like & get
recommendations!
Published in 2018 at "IEEE Transactions on Neural Networks and Learning Systems"

DOI: 10.1109/tnnls.2017.2728138

Abstract: In clustering analysis, data attributes may have different contributions to the detection of various clusters. To solve this problem, the subspace clustering technique has been developed, which aims at grouping the data objects into clusters… read more here.

Keywords: number clusters; subspace clustering; numerical categorical; subspace ... See more keywords
Photo by kellysikkema from unsplash

A thermodynamic approach to selecting a number of clusters based on topic modeling

Sign Up to like & get
recommendations!
Published in 2017 at "Technical Physics Letters"

DOI: 10.1134/s1063785017060207

Abstract: A thermodynamic approach has been applied to solving the problem of selecting the number of clusters/topics in topic modeling. The main principles of this approach are formulated and the behavior of topic models during temperature… read more here.

Keywords: number clusters; selecting number; number; thermodynamic approach ... See more keywords