Sign Up to like & get
recommendations!
0
Published in 2020 at "Journal of Functional Analysis"
DOI: 10.1016/j.jfa.2020.108796
Abstract: Let $p\in(0,1)$, $\alpha:=1/p-1$ and, for any $\tau\in [0,\infty)$, $\Phi_{p}(\tau):=\tau/(1+\tau^{1-p})$. Let $H^p(\mathbb R^n)$, $h^p(\mathbb R^n)$ and $\Lambda_{n\alpha}(\mathbb{R}^n)$ be, respectively, the Hardy space, the local Hardy space and the inhomogeneous Lipschitz space on $\mathbb{R}^n$. In this article,…
read more here.
Keywords:
hardy space;
phi mathbb;
mathbb;
local hardy ... See more keywords